
Mr. Deepak Moud et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.280-282

www.ijera.com 280 | P a g e

Smart Fuzzer

Mr. Deepak Moud, Mr. B. L Pal
MTech Scholar Mewar University, Chittorgarh

Associate Professor, Mewar Universty, Chittorgarh

Abstract
Fuzzing is basically bug finding technique.

This is done by providing an application with semi-valid input. The input should in most cases be good enough

so applications will assume it as valid input, but at the same time be broken enough so that parsing done on this

input will fail. Such failing can lead to unexpected results such as crashes, information leaks, delays, etc. It also

requires understanding possible bugs that can be found in code.

Smart fuzzer creates fuzzed files to be used for fuzz testing. It finds bug automatically. We will develop a web

application user interface which has the smart fuzzer developed as the back end.

Keywords: smart fuzzer, asp.net with c#, platform: Visual Studio 2010

I. INTRODUCTION
You can never test quality or security into an

application. If the application is written in an

insecure manner with poor coding practices or has a

large attack surface, no amount of testing will make it

secure.

Although known to only a few developers, non-

security experts can conduct effective security

testing, most notably by fuzz testing. Fuzz testing

includes penetration testing, run-time verification, re-

reviewing threat models and re-evaluating the attack

surface.

The goals of testing are:

Verify that the application block is able to meet all

requirements in accordance with the functional

specifications document.

Make sure that the application block has consistent

and expected output for all usage scenarios for both

valid and invalid inputs.

For example, make sure the error messages are

meaningful and help the user in diagnosing the actual

problem.

White box testing assumes that the tester can take a

look at the code for the application block and create

test cases that look for any potential failure scenarios.

During white box testing, you analyze the code of the

application block and prepare test cases for testing

the functionality to ensure that the class is behaving

in accordance with the specifications and testing for

robustness. In software testing, fuzzing is the practice

of forcing applications to consume corrupted data and

observing the results. Poorly coded applications will

“fall over” when they get fuzzed data, typically trying

to process the data without checking to see if it’s

correct and complete.

Well-coded applications will not crash, nor will they

become unstable because they reject improper data.

The practice of fuzz testing can quickly uncover

dramatic coding errors and is relatively simple to do,

which explains its increasing popularity in the test

community and its use in the Microsoft® SDL.

Unfortunately, the same things that make it popular

with testers, make it popular with hackers whose goal

is to crash applications and look for sensitive data.

This popularity with hackers now makes the practice

in the software development lab a requirement, not

just a cool new way to test—applications have to be

prepared for fuzzing.

II. METHODOLOGY
Fuzz testing is accomplished by attacking all

of an application’s data interfaces, typically the file

system, network, libraries, registry and GUI. In its

simplest form, fuzzing is accomplished using

randomized data—a jumbled raw network stream for

example. This type of attack will cause poorly coded

applications to crash, but are non-deterministic in

nature and just tell the software team that there is a

problem and points to its general locus. More

sophisticated fuzzing includes parametric data

designed to attack specific parts of an application—a

corrupted word processing file header for example.

This type of testing provides deterministic results that

allow software teams to zero in on specific areas of

concern and attack in a very focused and

reproducible manner. Both are good, both provide

valuable data on the fragility and security of an

application.

Specialized tooling is not necessary to

effectively fuzz test an application. It is, a simple

thing to make a spreadsheet tool try to consume an

image file and see what happens. It is also simple to

break out a hex editor and change values in a file

RESEARCH ARTICLE OPEN ACCESS

Mr. Deepak Moud et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.280-282

www.ijera.com 281 | P a g e

header. However, it is a tedious process and

automation allows a greater range and depth of fuzz

testing. A dramatic example of where random fuzz

testing needs automation is in the Microsoft® SDL

where applications are required to consume 100,000

fuzzed files. If an application fails to open just one,

be it the first or the 99,999th, they have to be repaired

and retested using the entire file collection. Creating

100,000 files for testing is a big job and automated

tooling can help dramatically. A decent automated

tool will generate a collection of randomly fuzzed

files with the proper extensions for the application to

consume; a better tool will use a sample collection of

files as a template and do very specific fuzzing to

specific parts of files; and a great tool will virtualize

the file stream and obviate the need for physical files

in the first place. In any case, the benefit of

automation in a large test file collection is as clear as

the benefits of fuzz testing itself.

Fuzzer

Fuzzer is a testing tool which is meant for

checking the robustness of the the application. And

the fuzzer does it by providing the semi-valid inputs

to the application. Semi-valid inputs are kind of

random inputs which are fed to the application under

test and then we see how the application responds to

it. If the application respond abnormally or terminate

the execution or anything which we cannot call as

normal response then the bug in the application is

exposed and the application cannot be called as

secure and robust.

III. WORKING
Dumb Fuzzer

Dumb Fuzzer changes the data at random. Dumb

fuzzing is a shotgun approach: you take a valid file

and randomly corrupt it.

Smart Fuzzer

Smart fuzzer knows the data structure of the file

format and is used to change specific values within

the file.

Ways to fuzz a file

 You can smart fuzz or dumb fuzz a file in

many ways, including these:

 Making the file smaller than normal

 Filling the entire file with random data

 Filling portions of the file with random data

 Searching for null-terminated strings (in

ASCII and Unicode) and setting the trailing

null to non-null

 Setting numeric data types to negative

values

 Exchanging adjacent bytes

 Setting numeric data types to zero

 Toggling, setting, or clearing high bits

(0x80, 0x8000, and so on)

 Doing an exclusive OR (XOR) operation on

all bits in a byte, one bit at a time

 Looking back at the PNG format, you could

be very specific and smart fuzz a file by

using the following techniques:

 Set the chunk length to a bogus value.

 Create random chunk names. (They are

case-sensitive, and the case has specific

meaning.)

 Build a file with no IHDR chunk.

 Build a file with more than one IHDR

chunk.

 Set the width, height or color depth to

invalid values (0, negative values, and so

on).

 Set invalid compression, filter or interlace

modes.

 Set an invalid color type.

IV. SCOPE OF WORK AND

BOUNDARY CONDITIONS
Smart fuzzer can be used for quality

assurance of applications developed in industry or by

individuals. It is used during the testing phase of

applications. The fuzzed files generated by fuzzer are

injected into the applications under test to analyze its

response.

Smart fuzzer would be a useful tool for the team

involved in the testing of an application. It

automatically generates efficient test cases thereby

eliminating the overhead of manual testing.

The Smart Fuzzer for PNG File Format works only

for PNG files and generates test cases that can be

used to test only the applications used to view

images.

The fuzzing options provided in the fuzzer include

the following chunks:

IHDR Chunk

sRGB Chunk

gAMA Chunk

pHYs Chunk

IDAT Chunk

tEXt Chunk

sBIT Chunk

bKGD Chunk
The above mentioned chunks are selected on the

basis of their high frequency of occurrence in the

PNG images.

These chunks therefore, produce effective results

when PNG files are fuzzed.

V. CONCLUSION
Smart fuzzer for PNG file format is a

fuzzing tool which is used to produce fuzzed files.

Mr. Deepak Moud et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.280-282

www.ijera.com 282 | P a g e

Smart fuzzer would play an important role in

software industry. Smart fuzzer would be used during

the testing phase of the software development. The

automatic generation of test cases would save both

time and effort thus making it a good choice for the

test case generation.

Smart fuzzer is a scalable tool which can be

further extended for other file formats as well. It

would add to its functionality and make it a versatile

application. It would help in development of high

quality applications and ensure that the applications

are robust enough to handle exceptions.

REFERENCES
[1] Michael Sutton, Adam Greene, Pedram

Amini (2007).Fuzzing: Brute Force

Vulnerability Discovery. Addison-

Wesley. ISBN 0-321-44611-9.

[2] John Neystadt (2008-02). "Automated

Penetration Testing with White-Box

Fuzzing". Microsoft. Retrieved 2009-05-14.

[3] Barton Miller (2008). "Preface". In Ari

Takanen, Jared DeMott and Charlie

Miller, Fuzzing for Software Security

Testing and Quality Assurance, ISBN 978-

1-59693-214-2

[4] "Fuzz Testing of Application Reliability".

University of Wisconsin-Madison. Retrieved

2009-05-14.

[5] "Kaksonen, Rauli. (2001) A Functional

Method for Assessing Protocol

Implementation Security (Licentiate thesis).

Espoo. Technical Research Centre of

Finland, VTT Publications 447. 128 p. +

app. 15 p. ISBN 951-38-5873-1 (soft back

ed.) ISBN 951-38-5874-X (on-line

ed.)." (PDF). Retrieved 2010-05-28.

[6] Stefan Wappler, Joachim Wegener:

Evolutionary unit testing of object-oriented

software using strongly-typed genetic

programming. GECCO 2006: 1925-1932

[7] Goldberg, David E. Genetic Algorithms in

Search, Optimization and Machine Learning

Addison-Wesley Pub. Co. 1989. ISBN:

0201157675

[8] http://www.appliedsec.com/resources.html

[9] http://www.goldenftpserver.com/

[10] Patrice Godefroid, Adam Kiezun, Michael

Y. Levin."Grammar-based Whitebox

uzzing". Microsoft Research.

[11] "Software Fault Injection: Inoculating

Programs Against Errors by Jeffrey M. Voas

and Gary McGraw". John Wiley & Sons.

January 28, 1998.

[12] A. Takanen, J. De Mott, C. Miller, Fuzzing

for Software Security Testing and Quality

Assurance, 2008, ISBN 978-1-59693-214-2

[13] Wegener, Sthamer, & Baresel. “Application

Fields for Evolutionary Testing”, Euro

STAR, 2001.

[14] H. Pohl, Cost-Effective Identification of

Zero-Day Vulnerabilities with the Aid of

Threat Modeling and Fuzzing

 [15] J. DeMott, “Benchmarking Grey-box

Robustness Testing Tools with an Analy

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-321-44611-9
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://en.wikipedia.org/wiki/Special:BookSources/9781596932142
http://en.wikipedia.org/wiki/Special:BookSources/9781596932142
http://pages.cs.wisc.edu/~bart/fuzz/
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.appliedsec.com/resources.html
http://people.csail.mit.edu/akiezun/pldi-kiezun.pdf
http://people.csail.mit.edu/akiezun/pldi-kiezun.pdf
http://www.amazon.com/dp/0471183814
http://www.amazon.com/dp/0471183814
http://www.amazon.com/dp/0471183814
http://www.amazon.com/dp/0471183814
http://en.wikipedia.org/wiki/Special:BookSources/9781596932142
http://www.softscheck.com/publications/softScheck%20Pohl%20Cost-Effective%20Identification%20of%20Less-Than%20Zero-Day%20Vulnerabilities%20WPE.pdf
http://www.softscheck.com/publications/softScheck%20Pohl%20Cost-Effective%20Identification%20of%20Less-Than%20Zero-Day%20Vulnerabilities%20WPE.pdf
http://www.softscheck.com/publications/softScheck%20Pohl%20Cost-Effective%20Identification%20of%20Less-Than%20Zero-Day%20Vulnerabilities%20WPE.pdf

